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The body is constantly faced with a dynamic requirement for blood flow. The heart is able to respond to these changing
needs by adjusting cardiac output based on cues emitted by circulating catecholamine levels. Cardiac β-adrenoceptors
transduce the signal produced by catecholamine stimulation via Gs proteins to their downstream effectors to increase heart
contractility. During heart failure, cardiac output is insufficient to meet the needs of the body; catecholamine levels are high
and β-adrenoceptors become hyperstimulated. The hyperstimulated β1-adrenoceptors induce a cardiotoxic effect, which could
be counteracted by the cardioprotective effect of β2-adrenoceptor-mediated Gi signalling. However, β2-adrenoceptor-Gi

signalling negates the stimulatory effect of the Gs signalling on cardiomyocyte contraction and further exacerbates
cardiodepression. Here, further to the localization of β1- and β2-adrenoceptors and β2-adrenoceptor-mediated β-arrestin
signalling in cardiomyocytes, we discuss features of the dysregulation of β-adrenoceptor subtype signalling in the failing heart,
and conclude that Gi-biased β2-adrenoceptor signalling is a pathogenic pathway in heart failure that plays a crucial role in
cardiac remodelling. In contrast, β2-adrenoceptor-Gs signalling increases cardiomyocyte contractility without causing
cardiotoxicity. Finally, we discuss a novel therapeutic approach for heart failure using a Gs-biased β2-adrenoceptor agonist and
a β1-adrenoceptor antagonist in combination. This combination treatment normalizes the β-adrenoceptor subtype signalling in
the failing heart and produces therapeutic effects that outperform traditional heart failure therapies in animal models. The
present review illustrates how the concept of biased signalling can be applied to increase our understanding of the
pathophysiology of diseases and in the development of novel therapies.
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stimulatory G protein; HF, heart failure; PKA, cAMP-dependent protein kinase; SNS, sympathetic nervous system
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Introduction

Cardiovascular disease is the number one cause of death
globally (World Health Organization, 2011). Coronary artery
disease is the most prevalent form of cardiovascular disease
and is the cause of heart attack (myocardial infarction), an
acute illness with very high mortality and morbidity. Given
that adult cardiomyocytes cannot re-enter the cell cycle, the
death of cardiomyocytes as a result of the blockade of a major
coronary artery will permanently weaken cardiac perfor-
mance. The workload of the remaining cardiomyocytes has to
increase to maintain a sufficient cardiac output. A series of
compensatory responses are usually triggered, which in many
cases lead to structural changes in the heart itself. The process
once started will progress to a serious chronic illness called
heart failure (HF). Thus, survivors of heart attacks are predis-
posed to HF, a potentially fatal condition manifested by a
progressive decline of cardiac function. HF is also a common
converging point of various late-stage cardiovascular condi-
tions, such as cardiomyopathy, valvular heart disease and
hypertension. Age is an important risk factor for HF as more
than 75% of all cases are composed of people older than 65
(Rich, 1997). Patients diagnosed with HF have a mean sur-
vival rate of 50% in 5 years inspite of medical interventions.
In 2011, HF was one of the top 10 most expensive conditions
seen during inpatient hospitalizations in the United States,
with aggregate inpatient hospital costs of more than $10.5
billion (Torio and Andrews, 2013). Medications for the man-
agement of HF with left ventricular dysfunction commonly
include β-blockers and ACE inhibitors (ACEI) which have
been used clinically for more than 25 years. However, a large
and growing population of patients respond poorly to this
standard treatment (Owan et al., 2006). Therefore, HF is a
serious public health problem in many societies with an
urgent need for better treatment options.

The pathophysiology of HF commonly involves initiation
of hormonal factors that stimulate a wide variety of
membrane-bound receptors. Many of these receptors, includ-

ing angiotensin receptors and β-adrenoceptors, are members
of the GPCR superfamily, which play essential roles in the
regulation of cardiovascular function. Understanding the sig-
nalling mechanisms of these receptor systems is the key to
the development of medications beyond β-blockers, angio-
tensin receptor blockers and ACEI. In particular, a recently
described phenomenon named ‘functional selectivity’ has
been highly regarded as a new avenue for drug discovery
based on GPCR signal transduction (Kenakin, 2007;
Mailman, 2007; Urban et al., 2007; Violin and Lefkowitz,
2007; Woo and Xiao, 2012). However, GPCR signal transduc-
tion is dauntingly complex with multiple intracellular signal-
ling cascades operating integrally to produce an orchestrated
biological response. Even for a single β2-adrenoceptor, the
prototypical member of the GPCR superfamily purified
(Caron and Lefkowitz, 1976) and cloned (Dixon et al., 1986)
about 30 years ago, we still have much to learn about its
signalling after more than 20 years of research. Here, we
review some recent developments in β2-adrenoceptor signal-
ling with special emphasis on the translational implications
of biased β2-adrenoceptor signalling in the context of HF. In
this review, we focus on the biased signalling of the
β2-adrenoceptor with regard to its coupling to different
G-protein subtypes. The β2-adrenoceptor is also known to
transduce the G protein-independent β-arrestin-dependent
signalling. Reviews discussing the different types of biased
signallings of the β-adrenoceptors are available (Christensen
et al., 2010; Evans et al., 2010; Woo and Xiao, 2012).

Physiological function of
β-adrenoceptors in the heart

The mammalian heart expresses three subtypes of
β-adrenoceptors (β1, β2 and β3). In a normal human heart, the
β1- and β2-adrenoceptors play predominant roles in enhanc-
ing excitation-contraction coupling. As shown in Figure 1,
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the stimulation of β-adrenoceptors by catecholamines such as
adrenaline and noradrenaline activates the canonical Gs-AC-
cAMP-PKA signalling cascade. In cardiomyocytes, the acti-
vated PKA phosphorylates multiple cellular proteins which
concertedly increase calcium mobilization across different
cellular compartments. It also sensitizes contractile proteins
to cytosolic calcium ion levels. In sinoatrial nodal cells, PKA
increases the automaticity of the calcium clock. The overall
physiological effect of cardiac β-adrenoceptor stimulation is
an increase in heart contractility (inotropic effect) and heart
rate (chronotropic effect). The relative densities of β1- and
β2-adrenoceptors are significantly greater in the sinoatrial
node than in the atrium. Thus, total β1- and β-adrenoceptor
densities are >3-fold higher in the sinoatrial node than adja-
cent atrial myocardium, reflecting their specialized roles in
regulating cardiac rate and rhythm. The β1-subtype is pre-
dominant in both regions. The β2-subtype, however, is >2.5-
fold more abundant in the sinoatrial node than in the atrial
myocardium. The relatively high β2-adrenoceptor density in
the human sinoatrial node is consistent with physiological
studies that implicate this receptor in regulating cardiac
chronotropism (Rodefeld et al., 1996).

Under the control of the CNS, the sympathetic nervous
system (SNS) positively modulates cardiac function by pro-
moting the secretion of noradrenaline from the nerve termi-
nals. The activity of the SNS is enhanced by a ‘fight-or-flight’
trigger when the body’s demand for cardiac output is
increased. The SNS-catecholamine-β-adrenoceptor axis is the
major mechanism by which the heart is driven to work

harder. However, long-term activation of the SNS can lead to
structural changes in the heart (cardiac remodelling) and may
progress to HF.

Dual coupling to Gs and Gi proteins
defines β2-adrenoceptor as a regulator
of cardiac function

A fundamental question is whether the existence of different
β-adrenoceptor subtypes in the heart represents functional
redundancy; the signalling properties of these receptors will
reveal the answer. Physiologically, the inotropic response to
catecholamine stimulation is mediated mainly by β1-
adrenoceptors because the β2-adrenoceptor-Gs-mediated
cAMP response is inhibited by the co-activated β2-
adrenoceptor-Gi signalling. We have shown that while the
β1-adrenoceptor couples only to Gs proteins, the β2-
adrenoceptor couples to both Gs and Gi proteins (Xiao et al.,
1995; 1999) (Figure 1). Numerous studies in rodent cardio-
myocytes have confirmed the existence of a strong coupling
of β2-adrenoceptors to Gi proteins. In the normal human
heart β2-adrenoceptors favour coupling to Gs proteins,
although coupling to Gi proteins is also detected (Brown and
Harding, 1992; Kilts et al., 2000; Molenaar et al., 2007).
However, in pathological situations, such as high circulating
catecholamine levels during acute Takotsubo syndrome
(Gorelik et al., 2013) or high levels of expression of cardiac Gi
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Figure 1
Cardiac β-adrenoceptor signalling in physiological conditions. Under physiological conditions, cardiomyocytes express β1- and β2-adrenoceptors
at a 4:1 ratio. While β1-adrenoceptors are distributed across the entire cell surface, β2-adrenoceptors are localized at the T-tubules and the
caveolae. In response to catecholamine (CA) stimulation, the β1-adrenoceptor couples to the heterotrimeric G protein Gs, leading to its activation
and dissociation into the Gαs subunit and Gβγ dimers. The activated Gαs subunit activates AC which then produces cAMP to activate PKA. PKA
phosphorylates effector proteins to increase cardiomyocyte contractility. The β2-adrenoceptor couples to both Gs and Gi proteins. It also responds
to CA stimulation and mediates a mild contractile response via the Gs-AC-cAMP-PKA signalling cascade. The inotropic effect is mild because
β2-adrenoceptor also activates Gi proteins which inhibit the production of cAMP by AC.

BJP A Y-H Woo et al.

5446 British Journal of Pharmacology (2015) 172 5444–5456



proteins during congestive HF, the effect of β2-
adrenoceptor-Gi signalling becomes much more prominent
(Bohm et al., 1994; Gong et al., 2002). Nevertheless, the func-
tional existence of β2-adrenoceptor-Gi signalling in the
chronically failing human heart is still a matter of debate
(Kilts et al., 2000; Gong et al., 2002; El-Armouche et al., 2003;
Molenaar et al., 2007; Hussain et al., 2013).

Another distinction between the signallings of the
two β-adrenoceptor subtypes is the involvement of Ca2+/
calmodulin-dependent kinase II (CaMKII). If β1-adrenoceptor
stimulation is prolonged, the CaMKII signalling pathway is
triggered while the PKA pathway subsides (Wang et al., 2004).
Multiple studies have implicated a pathological role for
CaMKII in HF (for reviews, see Anderson et al., 2011 and
Swaminathan et al., 2012). Increases in cardiac CaMKII activ-
ity promote cardiomyocyte apoptosis (Zhu et al., 2003),
cardiac remodelling (Backs et al., 2006; Ling et al., 2009) and
arrhythmias (Wu et al., 2002; van Oort et al., 2010) (Figure 2B).
In the heart, β2-adrenoceptors respond to catecholamine
stimulation and regulate the effect of β1-adrenoceptors on
excitation-contraction coupling by activating Gi signalling.
They also protect the cardiomyocytes from the pro-apoptotic
stimuli of excessive β1-adrenoceptor stimulation (Chesley
et al., 2000; Zhu et al., 2001). The β2-adrenoceptor-Gi signal-
ling prevents excessive activation of the cAMP pathway on the
one hand while activating a prosurvival PI3K-Akt signalling
cascade on the other (Chesley et al., 2000) (Figure 2B). The
concept of dual modulation of cardiomyocyte survival and
death by the two β-adrenoceptor subtypes (Zhu et al., 2001)
has been confirmed in various genetic models including trans-
genic overexpression of β1-adrenoceptors (Engelhardt et al.,
1999; Bisognano et al., 2000), knockout of β2-adrenoceptors
(Patterson et al., 2004; Bernstein et al., 2005), gain-of-function
mutation of β1-adrenoceptors (Mialet Perez et al., 2003) and
loss-of-function mutation of β2-adrenoceptors (Liggett et al.,
1998). It is concluded that the existence of β2-adrenoceptors in
the heart is not merely a functional redundancy. The
β2-adrenoceptor is, in fact, the first-line regulator of cardiac
function.

Mechanisms of β2-adrenoceptor-Gi

coupling and β-adrenoceptor
desensitization

Regarding the mechanism of β2-adrenoceptor-Gi coupling,
Daaka et al. (1997) have suggested that phosphorylation of
the β2-adrenoceptor by PKA causes the switching of the recep-
tor coupling from Gs to Gi. Others (Wang et al., 2008; Liu
et al., 2009) have proposed that GPCR kinase (GRK)-mediated
receptor phosphorylation also enhances β2-adrenoceptor-Gi

coupling. However, our recent studies suggest that phospho-
rylation of the receptor alone is insufficient to trigger
β2-adrenoceptor-Gi coupling (Woo et al., 2009; 2014). In these
scenarios, stimulation with the Gs-biased β2-adrenoceptor
agonists markedly increased β2-adrenoceptor phosphoryla-
tion at both the PKA and GRK sites without activating the Gi

signalling, suggesting that ligand-specific receptor conforma-
tion may be a previously unrecognized determinant for the
coupling of the β2-adrenoceptor to different Gs and Gi pro-

teins (for details, see companion article). Further studies are
needed to elucidate the mechanism of β2-adrenoceptor-Gi

coupling.
Receptor phosphorylation is essentially involved in the

process of GPCR desensitization (uncoupling of the G protein
from the cognate receptor). Homologous desensitization is
initiated by stimulation of the receptor with high concentra-
tions of its agonist resulting in a change in the receptor
conformation to its active state. GRKs can then phosphor-
ylate the threonine and the serine residues at the C-terminus
of the activated receptor. Such phosphorylation increases the
affinity of the multifunctional adaptor protein β-arrestin for
the receptor, resulting in the uncoupling of the α subunit of
the heterotrimeric G protein (Gαs in the case of the
β2-adrenoceptor) from the receptor. The β-arrestin, by inter-
acting with components of the endocytic machinery such
as clathrin and the adaptor protein 2 (AP2) adaptor complex,
targets the GPCR for clathrin-mediated endocytosis and
internalization (Lefkowitz, 1998) (Figure 2A). Heterologous
desensitization is the desensitization of a GPCR induced by
the activation of another GPCR, without the need for phos-
phorylation of the former GPCR by GRKs. As will be discussed
below, both homologous and heterologous desensitization of
the β1-adrenoceptor occur in the failing heart and these pro-
cesses participate in the pathogenesis of HF.

Subcellular localization of
β-adrenoceptor subtypes

Early studies on cardiomyocytes suggest that cellular cAMP
level does not correlate with the extent of Ca2+ mobilization
across cellular membranes and phosphorylation of phos-
pholamban (Kuschel et al., 1999a,b). In particular, the
β2-adrenoceptor-mediated cAMP signalling is local while the
β1-adrenoceptor-mediated cAMP signalling is global (Kuschel
et al., 1999a,b). Studies have demonstrated that caveolin 3
plays a crucial role in the localization of β2-adrenoceptors and
the β2-adrenoceptor-mediated cAMP signalling to the trans-
verse tubules (T-tubules) (Nikolaev et al., 2010) and caveolae
in adult cardiomyocytes (Rybin et al., 2000; Calaghan and
White, 2006) (Figure 1). On the other hand, β1-adrenoceptors
appear to be distributed evenly on the caveolin 3-enriched
and other plasma membrane fractions in adult cardiomyo-
cytes (Rybin et al., 2000) (Figure 1). Restricting the
β2-adrenoceptor-mediated cAMP signalling to cellular subdo-
mains allows the common second messenger, cAMP, to
perform selective functions without causing a global effect.

β-Adrenoceptor subtype signalling in
the aetiology of HF

A dysregulation of the β-adrenoceptor signalling plays a
crucial role in the aetiology and progression of HF. As sum-
marized in Figure 2, the sustained activation of SNS leads to a
series of molecular changes in the heart including the down-
regulation of β1-adrenoceptors (Bristow et al., 1982; 1993) and
the up-regulation of Gi (Feldman et al., 1988; Bohm et al.,
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Figure 2
Cardiac β-adrenoceptor signalling during heart failure. During heart failure, the level of circulating catecholamine (CA) increases. The
β1-adrenoceptor is hyperstimulated and down-regulated. The expression level of β2-adrenoceptors remains unchanged. The β1- : β2-adrenoceptor
ratio drops to 3:2. The structural derangement in the failing cardiomyocytes causes the β2-adrenoceptors to translocate from the T-tubules and
the caveolae to the crests of the plasma membranes. GPCR kinase 2 (GRK2) and Gi proteins are up-regulated. The hyperstimulation of
β-adrenoceptors increases the availability of activated Gβγ dimers for binding with GRK2. The translocation of GRK2 to the plasma membranes is
increased. GRK2 phosphorylates β1-adrenoceptor (P-linked) and subsequently leads to the recruitment of β-arrestins (β-arr) to the receptor. The
binding of β-arr causes the β1-adrenoceptor to uncouple from Gs proteins and terminates β2-adrenoceptor-Gs signalling. Moreover, GRK2 also
phosphorylates β2-adrenoceptors and leads to Gi-biased signalling. In effect, the enhanced β2- adrenoceptor-Gi signalling causes the desensiti-
zation and uncoupling of Gs proteins to both β1- and β2-adrenoceptors. Therefore, the cardiac contractile reserve is markedly reduced (A). The
binding of β-arr to β1-adrenoceptors facilitates receptor internalization and interaction with exchange protein directly activated by cAMP (Epac)
and CaMKII. The internalized β1-adrenoceptor can be sorted to degradation. cAMP activates Epac which in turn induces the activation of CaMKII.
The activated CaMKII induces cardiotoxic and cardiac remodelling effects. The β2-adrenoceptor-Gi signalling is associated with an anti-apoptotic
effect through activation of the ERK and the PI3K-Akt signalling cascades (some intermediate effectors are not shown). This anti-apoptotic effect
partially counteracts the CaMKII-mediated cardiotoxic effect (B).
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1994) and GRK2 (Ungerer et al., 1993; 1994), the predomi-
nant GRK isoform expressed in the heart (Inglese et al., 1993).
At the same time, the expression levels of β2-adrenoceptors
(Bristow et al., 1986) and Gs (Eschenhagen et al., 1992)
remain unchanged. This can be rationalized as the heart
switches to a protected mode of operation by reducing the
cardiotoxic β1-adrenoceptor signalling and increasing the car-
dioprotective β2-adrenoceptor signalling. The outcome is a
change in the β1-adrenoceptor : β2-adrenoceptor ratio from
80:20 in the normal heart to 60:40 in the failing heart
(Bristow et al., 1982; 1986; 1989). However, the efficiency of
the SNS-catecholamine-β-adrenoceptor axis is decreased
under this mode of operation. The signalling efficiency of
β1-adrenoceptors is markedly reduced in the failing heart as a
result of their desensitization and down-regulation (Bristow
et al., 1982). In addition, as we will explain shortly, the
enhanced β2-adrenoceptor-Gi signalling also contributes
to the uncoupling of the Gs proteins to both β1- and
β2-adrenoceptors (Bristow et al., 1989; Zhu et al., 2005a). If
the CNS responds by further increasing the activity of SNS, a
vicious cycle will ensue. Conversely, this explains why
β-blockers can break this cycle. β-blockers have been used to
treat HF for 25 years with success, bringing down total mor-
tality by one-third (McMurray and Pfeffer, 2005). Subtype
non-specific β-adrenoceptor blockers used in early years have
subsequently been replaced with β1-adrenoceptor subtype
selective blockers with reduced side effects and increased tol-
erability (Waagstein et al., 1993). The treated hearts improve
both structurally and functionally and the β1-: β2-adrenocep-
tor ratio is normalized (Australia/New Zealand Heart Failure

Research Collaborative Group, 1997; CIBIS-II Investigators
and Committees, 1999; MERIT-HF Study Group, 1999; Packer
et al., 2001), as shown in Figure 3.

cAMP imaging in adult cardiac myocytes reveals
far-reaching β1-adrenoceptor but locally confined β2-
adrenoceptor-mediated signalling (Nikolaev et al., 2006). In
cardiomyocytes from healthy adult rats and mice, spatially
confined β2-adrenoceptor-induced cAMP signals are thought
to concentrate at the deep T-tubules, whereas functional
β1-adrenoceptors are distributed across the entire cell surface
(Nikolaev et al., 2010) (Figure 1). However, recent evidence
has demonstrated that functional β2-adrenoceptor-Gs-cAMP
signalling occurs almost exclusively on cell surface sarco-
lemma of rat ventricular myocytes (Cros and Brett, 2013). In
cardiomyocytes derived from a rat model of chronic HF,
β2-adrenoceptors were redistributed from the T-tubules to the
cell crest (Figure 2), which led to the diffusion of receptor-
mediated cAMP signalling (Nikolaev et al., 2010). Thus, the
authors proposed that the redistribution of β2-adrenoceptors
in HF changes the compartmentation of cAMP and might
contribute to the failing myocardial phenotype.

The dual roles of β2-adrenoceptor-Gi

signalling in cardioprotection and
cardiodepression

Activation of the β2-adrenoceptor-Gi signalling protects
the heart from the deleterious effects of excessive
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Figure 3
Cardiac β-adrenoceptor signalling in the failing heart treated with a β1-adrenoceptor antagonist and a Gs-biased β2-adrenoceptor agonist. Treatment
of heart failure with a β1-adrenoceptor antagonist (β1

−) and a Gs-biased β2-adrenoceptor agonist (fenoterol or Fen) reverses the cardiomyopathic
changes. β1

− blocks further catecholamine (CA) stimulation of the β1-adrenoceptor, resulting in cessation of the cardiotoxic CaMKII signalling. The
expression level of β1-adrenoceptors and the location of β2-adrenoceptors become normalized. Meanwhile, translocation of GRK2 to the plasma
membrane is reduced. Fen stimulates β2-adrenoceptors to couple to Gs irrespective of the phosphorylation status of the receptor. The activation of
the Gs-biased β2-adrenoceptor signalling provides the needed contractile support to the failing heart without activating CaMKII.
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β1-adrenoceptor-Gs signalling. However, this cardioprotection
comes at a price, decreased contractility. Prolonged activation
of Gi through a synthetic receptor construct has been shown
to lead to a depressed cardiac function and eventually the
development of dilated cardiomyopathy (McCloskey et al.,
2008). In addition, the β2-adrenoceptor-Gi ‘switch’ is a key
protective mechanism underlying ischaemia/reperfusion-
induced preconditioning (Tong et al., 2005), although it is
also implicated in the cardiac stunning associated with
ischaemia (Vittone et al., 2006) and in Takotsubo cardiomyo-
pathy (Paur et al., 2012; Shao et al., 2013). Importantly, the
enhanced β2-adrenoceptor-Gi signalling cross-inhibits the
β1-adrenoceptor-mediated cAMP/PKA signalling as well as
negating the β2-adrenoceptor-Gs signalling and contributes to
the dysfunction of both β1- and β2-adrenoceptors in the
failing heart (Sato et al., 2004; Xiao and Balke, 2004; Lokuta
et al., 2005; Zhu et al., 2005b) (Figure 2A). Unlike in some
previous in vivo studies where β2-adrenoceptors were found to
be cardioprotective, a recent study in two HF models has
shown that β2-adrenoceptor signalling can be harmful
because of the negative regulation of the Ca2+ dynamics by
the enhanced β2-adrenoceptor-Gi signalling (Fajardo et al.,
2013). Thus, β2-adrenoceptor-Gi signalling plays dual roles in
cardioprotection and cardiodepression. This is manifested
clinically, particularly in Takotsubo syndrome, also called
stress-induced cardiomyopathy. During an episode of acute
adrenergic challenge, the high levels of circulating catecho-
lamines trigger cardiodepression in a β2-adrenoceptor-Gi-
dependent manner (Paur et al., 2012; Shao et al., 2013). The
β2-adrenoceptor-Gi signalling protects against the detrimental
consequences of excessive adrenergic drive. Preventing this
signalling converts the syndrome to a sudden death pheno-
type in rats (Paur et al., 2012; Shao et al., 2013).

Gi-biased β2-adrenoceptor signalling
links pathological GRK2 up-regulation
to HF

In advanced HF, the greatly increased expression of Gi and
GRK2 causes an exaggerated β2-adrenoceptor-Gi signalling
with important pathological consequences. Cardiac remodel-
ling is the central process in the progression of HF from
compensation to decompensation. Nevertheless, the molecu-
lar mechanism of cardiac remodelling is unclear. Multiple
lines of evidence have implicated a role for GRK2 in HF (Koch
et al., 1995; reviewed in Rengo et al., 2011; 2012). Firstly,
GRK2 levels are increased in human HF (Ungerer et al., 1993;
1994) and animal models of HF (Choi et al., 1997; Rockman
et al., 1998; Anderson et al., 1999). Secondly, GRK2
up-regulation is an early common event in myocardial
ischaemia (Ungerer et al., 1996) and hypertension (Gros et al.,
1997), which can lead to HF. Thirdly, Raake et al. (2008) have
demonstrated that GRK2 is a causative factor in cardiac
remodelling. Furthermore, GRK2-ct (carboxy terminus of
GRK2), a peptide inhibitor of the GRK2-Gβγ interaction,
reverses the progression of HF (Koch et al., 1995; Rockman
et al., 1998; Tachibana et al., 2005; Raake et al., 2008; Rengo
et al., 2011; 2012). These studies demonstrated that the
up-regulation of GRK2 is a causative component in maladap-

tive cardiac remodelling and the progression of HF. Other
studies have suggested that Gβγ involves ERK in the transcrip-
tional activation of pathological cardiac hypertrophy (Lorenz
et al., 2009). Interestingly, the activation of Gi protein does
not lead to the dissociation of the Gi subunit from the Gβγ

dimers (Frank et al., 2005) (depicted in Figure 2). Therefore,
the activated Gβγ dimers remain membrane-bound (Lorenz
et al., 2009). The availability of the activated Gβγ dimers
allows GRK2 to translocate to the plasma membrane to inter-
act with the β-adrenoceptors, because GRK2 contains a Gβγ-
binding domain in its C-terminus (Pitcher et al., 1992).
During HF, the availability of activated Gβγ dimers is increased
because of higher catecholamine levels (Figure 2A). The con-
certed increase in GRK2 levels (Ungerer et al., 1993; 1994;
Choi et al., 1997) and the increase in GRK2 translocation and
activity (Perrino et al., 2005) finally lead to the pathological
desensitization of both β-adrenoceptors (Figure 2A). GRK2-ct
has been proposed to reverse cardiac remodelling at least in
part by inhibiting Gβγ (Völkers et al., 2011).

Recently, we have shown that β2-adrenoceptor Gi-biased
signalling is the link between GRK2 up-regulation and the
progression to decompensated HF (Zhu et al., 2012). In this
study, transgenic mice expressing β2-adrenoceptors lacking all
their PKA phosphorylation sites [cardiac-specific Tg-β2-
adrenoceptor(PKA-)] exhibited an accelerated HF phenotype
under pressure-overload stresses as compared with transgenic
mice expressing the wild-type β2-adrenoceptor or β2-
adrenoceptors lacking all GRK phosphorylation sites. The
increases in GRK2 and Gi expression levels were also highest
in the hearts of the Tg-β2-adrenoceptor(PKA-) mice. Cardio-
myocytes isolated from these mice and the GRK2 transgenic
mice had compromised β-adrenoceptor function typical of a
failing heart. Surprisingly, inhibition of Gi by PTX fully
restored the β-adrenoceptor-mediated contractile response
and suppressed β-adrenoceptor desensitization in both
cases. These data suggest that the GRK2-dependent
β2-adrenoceptor-Gi signalling is a harmful pathway leading to
the progression to HF.

A novel therapy for HF using the
Gs-biased β2-adrenoceptor agonist

If enhanced β2-adrenoceptor-Gi signalling contributes to the
progression to HF, will it be possible to activate β2-
adrenoceptor-Gs without activating Gi to harvest the
beneficial effect of β2-adrenoceptor-Gs signalling? Using a car-
diomyocyte contractility assay, we screened different
β2-adrenoceptor agonists and found that while most
β2-adrenoceptor agonists stimulate the β2-adrenoceptor to
activate both Gs and Gi signalling, fenoterol only activates
β2-adrenoceptor-mediated Gs signalling (Xiao et al., 2003).
Fenoterol also produces a full contractile response in
myocytes isolated from the failing hearts of spontaneous
hypertensive rats (Xiao et al., 2003). These results indicate
that fenoterol is a potentially useful treatment for HF.
Based on our understanding of the β-adrenoceptor subtype
signalling, we have proposed to combine the blocking
of β1-adrenoceptors with the activation of Gs-biased
β2-adrenoceptor signalling in a novel treatment regimen for
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HF (Xiao et al., 2003; Zhu et al., 2005a; Woo and Xiao, 2012).
Subsequent studies in a rodent model of HF confirmed the
effectiveness of this approach (Ahmet et al., 2004; 2005;
2008). In a study comparing the long-term therapeutic effects
of combined β2-adrenoceptor stimulation with fenoterol and
β1-adrenoceptor blockade with metoprolol, we found that
either fenoterol alone or metoprolol alone were somewhat
effective at ameliorating the cardiomyopathic changes but
the combination therapy produced the best treatment
outcome (Ahmet et al., 2008). Results from a recent study
in a canine model of HF independently corroborated
the therapeutic usefulness of selective activation of the
Gs-biased β2-adrenoceptor signalling in HF (Chakir et al.,
2011).

At present, there is no clinical evidence as to whether the
activation of β2-adrenoceptor-Gs-cAMP is beneficial in human
HF. Preliminary studies have revealed no beneficial effect of a
modest cAMP increase produced through β-adrenoceptor
stimulation (Ikram and Crozier, 1990) and several reports
have also revealed adverse effects associated with high
dosages of β2-adrenoceptor agonists (Pearce et al., 1989;
Lindmark and Ottosson, 1998; Martin et al., 1998).

The obvious efficacy of β-blockers in the management of
HF has halted any further efforts to explore the potential
therapeutic usefulness of β2-adrenoceptor agonism. However,
further studies are needed to determine the clinical efficacy of
Gs-biased β2-adrenoceptor agonism in HF.

Diversity of β2-adrenoceptor-Gs

signalling and β1-adrenoceptor-Gs

signalling in HF

The opposite effects of β2-adrenoceptor-Gs signalling and
β1-adrenoceptor-Gs signalling in cell survival suggest that
although stimulation of both β-adrenoceptors similarly acti-
vates Gs proteins, the Gs signalling pathways mediated by the
two receptors differ in major ways. Firstly, β2-adrenoceptor-Gs

signalling does not activate the harmful CaMKII; this is
because the association of the β-arrestin-CaMKII-Epac1 (or
exchange protein directly activated by cAMP 1) with the
C-terminus of β1-AR is very specific for the activation of
CaMKII to occur (Mangmool et al., 2010) (Figure 2B).

As discussed earlier, cellular cAMP level does not change
upon β2-adrenoceptor stimulation, unlike the effect with
β1-adrenoceptor stimulation, suggesting that the β2-
adrenoceptor-mediated cAMP signalling is compartmental-
ized in adult cardiomyocytes (Kuschel et al., 1999a,b). HF is
manifested by substantial structural changes in ventricular
myocytes and this causes the redistribution of the β2-
adrenoceptors from the caveolin 3-enriched T-tubules and
caveolae to other non-caveolin 3-containing membrane frac-
tions (He et al., 2001; Louch et al., 2004; Lyon et al., 2009;
Nikolaev et al., 2010) (Figure 2). The β2-adrenoceptor-Gs-
cAMP signalling could be converted into a β1-adrenoceptor-
like global signalling in the failing heart (Nikolaev et al.,
2010). Stimulation of β2-adrenoceptors in this situation
might increase the incidence of arrhythmias possibly via an
Epac2-dependent mechanism (Desantiago et al., 2008; Pereira
et al., 2013). A recent study has suggested that overexpression

of caveolin 3 in failing myocytes partially restores the dis-
rupted localization of β2-adrenoceptors and normalizes
the compartmentalized β2-adrenoceptor-Gs-cAMP signalling,
implicating the important role of caveolin 3 in cardiac
β-adrenoceptor signalling (Wright et al., 2014).

One hypothesis is that β2-adrenoceptor activation will
produce a desirable signalling in the failing heart only if
applied before the anatomical structure of the cardiomyo-
cytes goes awry (Gorelik et al., 2013). However, this interpre-
tation does not necessarily exclude any benefits Gs-biased
β2-adrenoceptor agonism may bring to advanced HF, as
β-blockers may be used in combination to reverse the
structural changes in the failing cardiomyocytes (Chen
et al., 2012). A combination of β1-blockade and Gs-biased
β2-adrenoceptor agonism could, therefore, restore both
the structure and normalize the compartmentalized
β2-adrenoceptor-Gs-cAMP signalling in the failing cardiomyo-
cytes (Figure 3), which is a significant improvement as com-
pared with the standard treatment using a β1-blocker alone.
Importantly, our data have shown that failing rat hearts
treated with this combination regimen have a reduced inci-
dence of arrhythmias (Ahmet et al., 2008). In another recent
study on the rat cardiomyopathy model, the combined
(fenoterol + metoprolol) therapy is at least as good as the
clinical combination (metoprolol + ACEI) treatment with
respect to mortality and exceeds the latter with respect to
cardiac remodelling and infarct area expansion (Ahmet et al.,
2009).

Biased agonism beyond β-blockers
in cardioprotection

In the present review, we have focused on the potential clini-
cal application of Gs-biased β2-adrenoceptor agonism in HF
management. The β-adrenoceptors are also known to trans-
duce the G protein-independent β-arrestin-dependent signal-
ling, also called biased agonism (Violin and Lefkowitz, 2007).
In particular, the subtype non-selective β-blocker carvedilol
has been shown to activate ERK via β-arrestin-biased signal-
ling at β2-adrenoceptors (Wisler et al., 2007). Carvedilol has
also been found to induce the transactivation of the epider-
mal growth factor receptor (EGFR) via β-arrestin-biased sig-
nalling at β1-adrenoceptor (Kim et al., 2008). Recent clinical
trials have indicated that carvedilol is superior to other
β-blockers for treating HF (Poole-Wilson et al., 2003). Recent
studies have also shown that β-arrestin-dependent, G protein-
independent activation of EGFR via β1-adrenoceptors confers
cardioprotection in mice chronically stimulated with cat-
echolamines (Noma et al., 2007). Therefore, it has been
hypothesized that the special therapeutic effect of carvedilol
could be attributed to β-arrestin-biased agonism (Wisler et al.,
2007; Kim et al., 2008). Whether this signalling plays a role in
the cardioprotection associated with carvedilol remains to be
determined.

In addition, the possibility of β-blockers as Gi agonists has
been advanced (Gong et al., 2002) and the combination of
β1-adrenoceptor blockade plus β2-adrenoceptor-Gi activation
has also been advanced as a protective drug design strategy in
the setting of mechanical left ventricular assistance for end-
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stage HF (Rose et al., 2001; Hall et al., 2006). In these studies,
clenbuterol, a Gi-biased β2-adrenoceptor agonist (Siedlecka
et al., 2008), is added on top of β-blockers (and sometimes
together with ACEI, angiotensin II blockers, digoxin and
aldosterone receptor blockers) at a later stage under a
mechanical unloading treatment protocol. Therefore, the
overall therapeutic effect is likely to be the result of several
different factors.

Existing evidence also indicates that β2-adrenoceptor-Gi

activation is not only beneficial but also life-saving in the
acute heart failure associated with Takotsubo syndrome (Paur
et al., 2012; Shao et al., 2013). Although Takotsubo syndrome
and congestive HF share some common features such as high
circulating catecholamines and reduced cardiac function, a
major distinction between these diseases is in the course of
disease progression. Takotsubo syndrome is an acute episode
of cardiodepression, whereas congestive HF is a chronic dete-
rioration of both the structure and function of the heart.

Thus, non-discriminately targeting a specific signalling as
a general strategy in HF management should be discouraged.
Therapeutic signal modulation should aim at rectifying the
deregulated signalling based on a sound knowledge of the
molecular mechanism of the disease. For example, combina-
tion therapy with a β1-adrenoceptor antagonist and a
Gs-biased β2-adrenoceptor agonist may be a treatment option
for HF with exaggerated β2-adrenoceptor-Gi signalling accom-
panied by a high level of GRK2. Hence, the development of
biomarkers to differentiate HF subtypes that could yield most
benefits from biased β2-adrenoceptor agonist treatment is as
important as the development of therapeutic agents or the
treatment regimen itself.

Concluding remark

The development and gradual gain in acceptance of the
concept of functional selectivity in recent years have revolu-
tionized our understanding of GPCR signal transduction and
introduced new opportunities in drug discovery. In the heart,
the β2-adrenoceptor mediates an inotropic effect with much
less efficiency than the β1-adrenoceptor (Figure 1). Neverthe-
less, the fact that the β2-adrenoceptor couples to Gi in addi-
tion to Gs allows it to be a key regulator in cardiac function
and a potential drug target in cardiac conditions. The
β2-adrenoceptor not only mediates myocyte contractile
responses without increasing the cellular cAMP level, but it
also counteracts the pro-apoptotic effect of excessive
β1-adrenoceptor stimulation. However, during heart insuffi-
ciency, enhanced expression and activity of GRK2 and Gi

proteins promote an exaggerated Gi-biased β2-adrenoceptor
signalling, thus blunting the cardiac reserve function medi-
ated by both β1- and β2-adrenoceptors, resulting in maladap-
tive cardiac remodelling and failure (Figure 2). In addition,
Gi-biased β2-adrenoceptor signalling links the pathological
up-regulation of GRK to maladaptive cardiac remodelling and
thus defines itself as a pathogenic factor in HF. Conversely,
Gs-biased β2-adrenoceptor agonism is an attractive therapeu-
tic strategy for the treatment of HF. When combined with
β1-adrenoceptor blockade, it may provide contractile support
and protection to the failing heart (Figure 3). The therapeutic

potential of fenoterol and its derivatives (Jozwiak et al., 2007;
2010) in HF warrants further investigation.
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